Abstract
In this paper, we introduced and tested a new system based on a sensorized seat, to evaluate the sitting dynamics and sway alterations caused by different cognitive engagement conditions. An office chair was equipped with load cells, and a digital and software interface was developed to extract the Center of Pressure (COP). A population of volunteers was recruited to evaluate alterations to their seated posture when undergoing a test specifically designed to increase the cognitive engagement and the level of stress. Relevant parameters of postural sway were extracted from the COP data, and significant alterations were found in all of them, highlighting the ability of the system to capture the emergence of a different dynamic behavior in postural control when increasing the complexity of the cognitive engagement. The presented system can thus be used as a valid and reliable instrument to monitor the postural patterns of subjects involved in tasks performed in a seated posture, and this may prove useful for a variety of applications, including those associated with improving the quality of working conditions.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Stress Assessment for Augmented Reality Applications Based on Head Movement Features;IEEE Transactions on Visualization and Computer Graphics;2024-10
2. Sitting Posture Recognition and Feedback: A Literature Review;Proceedings of the CHI Conference on Human Factors in Computing Systems;2024-05-11
3. Objective Metrics Definition for QoE Assessment for Extended Reality Applications;Proceedings of the 2023 ACM International Conference on Interactive Media Experiences;2023-06-12