A Simple Capillary Blood Cell Flow Monitoring System using Magnetic Micro-Sensor: A Simulation Study

Author:

Jo Seonghoon,Eom Kyungsik

Abstract

Since blood flow is a physiologically important parameter in determining the state of the tissue (e.g., viability and activity), various blood flow measurement techniques have been developed. However, existing blood flow measurement methods require complex equipment to generate external energy sources to be applied onto the tissue. This paper describes a magnetic method for the simple and external source-free measurement of blood flowing throughout the capillary. A microcoil located near to the capillary captures the intrinsic magnetic field produced by flowing negatively charged blood cells (e.g., red blood cells and white blood cells) to induce the electromotive force (EMF). The velocity of blood cells is estimated using the time interval between adjacent peaks and the slope of the induced EMF. The direction of blood flow can also be determined based on the frequency shift of the induced EMF. When moving the microcoil in the same direction of the blood flow, the frequency of induced EMF decreases, whereas an increased frequency is observed when moving the microcoil in the opposite direction to the blood flow. Moreover, this method could detect and distinguish streams of red blood cells and white blood cells. These results support the feasibility of a non-invasive magnetic blood flow monitoring system that does not require any external power source applied to the blood stream and thereby alleviates the complexity of conventional blood flow monitoring systems.

Funder

National Research Foundation of Korea

Pusan National University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3