PESL: System-Level Estimation of Power-Management Effect on Dynamic Energy Consumption

Author:

Erdelyi Jaroslav,Macko DominikORCID,Jelemenska Katarina

Abstract

Power estimation is one of the key aspects that can help designers create digital circuits more effectively. If a designer is able to estimate circuit parameters during the early stages of development, correct decisions can be made that can significantly shorten the design time. The early design stages are represented by modeling at the system level of abstraction. However, existing system-level power/energy estimation methods are either too complicated, or they do not consider power management when estimating power consumption, meaning they are inaccurate. Therefore, in this paper we propose a method for a more accurate system-level estimation of the dynamic energy consumption by considering the impact of power management. The SystemC description of a power-managed system and the simulation results (in the form of the value change dump (VCD)) are inputs to the estimation method. The proposed method is based on an activity profile using the modified Hamming distance computation. The method is especially useful for the exploration of alternative power-management strategies, and it helps the designer to select the most efficient strategy.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference40 articles.

1. A Novel Energy Harvester for Powering Small UAVs: Performance Analysis, Model Validation and Flight Results

2. Evaluation of an optical energy harvester for SHM application

3. CMOS Power Consumption and Cpd Calculation;Sarwar,1997

4. Processor power estimation techniques: a survey

5. Power Estimation and Optimization Methodologies for VLIW-Based Embedded Systems;Zaccaria,2007

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3