Numerical Evaluation on Parametric Choices Influencing Segmentation Results in Radiology Images—A Multi-Dataset Study

Author:

Prasad Pravda Jith RayORCID,Survarachakan Shanmugapriya,Khan Zohaib Amjad,Lindseth Frank,Elle Ole Jakob,Albregtsen Fritz,Kumar Rahul PrasannaORCID

Abstract

Medical image segmentation has gained greater attention over the past decade, especially in the field of image-guided surgery. Here, robust, accurate and fast segmentation tools are important for planning and navigation. In this work, we explore the Convolutional Neural Network (CNN) based approaches for multi-dataset segmentation from CT examinations. We hypothesize that selection of certain parameters in the network architecture design critically influence the segmentation results. We have employed two different CNN architectures, 3D-UNet and VGG-16, given that both networks are well accepted in the medical domain for segmentation tasks. In order to understand the efficiency of different parameter choices, we have adopted two different approaches. The first one combines different weight initialization schemes with different activation functions, whereas the second approach combines different weight initialization methods with a set of loss functions and optimizers. For evaluation, the 3D-UNet was trained with the Medical Segmentation Decathlon dataset and VGG-16 using LiTS data. The quality assessment done using eight quantitative metrics enhances the probability of using our proposed strategies for enhancing the segmentation results. Following a systematic approach in the evaluation of the results, we propose a few strategies that can be adopted for obtaining good segmentation results. Both of the architectures used in this work were selected on the basis of general acceptance in segmentation tasks for medical images based on their promising results compared to other state-of-the art networks. The highest Dice score obtained in 3D-UNet for the liver, pancreas and cardiac data was 0.897, 0.691 and 0.892. In the case of VGG-16, it was solely developed to work with liver data and delivered a Dice score of 0.921. From all the experiments conducted, we observed that two of the combinations with Xavier weight initialization (also known as Glorot), Adam optimiser, Cross Entropy loss (GloCEAdam) and LeCun weight initialization, cross entropy loss and Adam optimiser LecCEAdam worked best for most of the metrics in a 3D-UNet setting, while Xavier together with cross entropy loss and Tanh activation function (GloCEtanh) worked best for the VGG-16 network. Here, the parameter combinations are proposed on the basis of their contributions in obtaining optimal outcomes in segmentation evaluations. Moreover, we discuss that the preliminary evaluation results show that these parameters could later on be used for gaining more insights into model convergence and optimal solutions.The results from the quality assessment metrics and the statistical analysis validate our conclusions and we propose that the presented work can be used as a guide in choosing parameters for the best possible segmentation results for future works.

Funder

Horizon 2020

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3