A Hierarchical Approach for Android Malware Detection Using Authorization-Sensitive Features

Author:

Chen HuiORCID,Li Zhengqiang,Jiang QingshanORCID,Rasool AbdurORCID,Chen Lifei

Abstract

Android’s openness has made it a favorite for consumers and developers alike, driving strong app consumption growth. Meanwhile, its popularity also attracts attackers’ attention. Android malware is continually raising issues for the user’s privacy and security. Hence, it is of great practical value to develop a scientific and versatile system for Android malware detection. This paper presents a hierarchical approach to design a malware detection system for Android. It extracts four authorization-sensitive features: basic blocks, permissions, Application Programming Interfaces (APIs), and key functions, and layer-by-layer detects malware based on the similar module and the proposed deep learning model Convolutional Neural Network and eXtreme Gradient Boosting (CNNXGB). This detection approach focuses not only on classification but also on the details of the similarities between malware software. We serialize the key function in light of the sequence of API calls and pick up a similar module that captures the global semantics of malware. We propose a new method to convert the basic block into a multichannel picture and use Convolutional Neural Network (CNN) to learn features. We extract permissions and API calls based on their called frequency and train the classification model by XGBoost. A dynamic similar module feature library is created based on the extracted features to assess the sample’s behavior. The model is trained by utilizing 11,327 Android samples collected from Github, Google Play, Fdroid, and VirusShare. Promising experimental results demonstrate a higher accuracy of the proposed approach and its potential to detect Android malware attacks and reduce Android users’ security risks.

Funder

Key-Area Research and Development Program of Guangdong Province

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference56 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Android Malware Detection Methods Based on Convolutional Neural Network: A Survey;IEEE Transactions on Emerging Topics in Computational Intelligence;2023-10

2. Electro search optimization based long short‐term memory network for mobile malware detection;Concurrency and Computation: Practice and Experience;2022-06-02

3. Nature-Inspired Malware and Anomaly Detection in Android-Based Systems;Advances in Nature-Inspired Cyber Security and Resilience;2021-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3