Research on the Cascade Vehicle Detection Method Based on CNN

Author:

Hu JianjunORCID,Sun Yuqi,Xiong Songsong

Abstract

This paper introduces an adaptive method for detecting front vehicles under complex weather conditions. In the field of vehicle detection from images extracted by cameras installed in vehicles, backgrounds with complicated weather, such as rainy and snowy days, increase the difficulty of target detection. In order to improve the accuracy and robustness of vehicle detection in front of driverless cars, a cascade vehicle detection method combining multifeature fusion and convolutional neural network (CNN) is proposed in this paper. Firstly, local binary patterns, Haar-like and orientation gradient histogram features from the front vehicle are extracted, then principal-component-analysis dimension reduction and serial-fusion processing are performed on the input image. Furthermore, a preliminary screening is conducted as the input of a support vector machine classifier based on the acquired fusion features, and the CNN model is employed to validate cascade detection of the filtered results. Finally, an integrated data set extracted from BDD, Udacity, and other data sets is utilized to test the method proposed. The recall rate is 98.69%, which is better than the traditional feature algorithm, and the recall rate of 97.32% in a complex driving environment indicates that the algorithm possesses good robustness.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference43 articles.

1. Private Car Ownership in China in 2019http//www.askci.com/news/chanye/20200107/1624461156140.shtml

2. Multi-target Tracking based on optical flow method and Kalman Filter;Shi;Comput. Appl.,2017

3. Improved Vehicle Detection Algorithm based on Gaussian Background Model;Hu;Comput. Eng. Des.,2011

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3