Abstract
Air pollution in cities has a massive impact on human health, and an increase in fine particulate matter (PM2.5) concentrations is the main reason for air pollution. Due to the chaotic and intrinsic complexities of PM2.5 concentration time series, it is difficult to utilize traditional approaches to extract useful information from these data. Therefore, a neural model with a dendritic mechanism trained via the states of matter search algorithm (SDNN) is employed to conduct daily PM2.5 concentration forecasting. Primarily, the time delay and embedding dimensions are calculated via the mutual information-based method and false nearest neighbours approach to train the data, respectively. Then, the phase space reconstruction is performed to map the PM2.5 concentration time series into a high-dimensional space based on the obtained time delay and embedding dimensions. Finally, the SDNN is employed to forecast the PM2.5 concentration. The effectiveness of this approach is verified through extensive experimental evaluations, which collect six real-world datasets from recent years. To the best of our knowledge, this study is the first attempt to utilize a dendritic neural model to perform real-world air quality forecasting. The extensive experimental results demonstrate that the SDNN offers very competitive performance relative to the latest prediction techniques.
Funder
Nature Science Foundation of the Jiangsu Higher Education 377 Institutions of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献