Abstract
Agents that build interactive relationships with people can provide appropriate support and generate behaviors by accurately grasping the state of the person. This study focuses on the quality of life (QOL), which can be assessed multidimensionally, and aims to estimate QOL scores in the process of human interaction. Although vision-based estimation has been the main method for QOL estimation, we proposed a new text-based estimation method. We created a QOL-specific dictionary called SqolDic, which is based on large-scale Japanese textual data. To evaluate the effectiveness of SqolDic, we implemented a system that outputs the time-series variation of a user’s conversation content and the QOL scores based on it. In an experiment for estimating the content of user conversations based on a QOL scale by inputting data from actual human conversations, we achieved a maximum estimation accuracy of 91.2%. Additionally, in an experiment to estimate QOL score variability, we successfully estimated the mental health state and one of the QOL scales with a smaller distribution of error than that in previous studies. The experimental results demonstrated the effectiveness of our system in estimating conversation content and QOL scores as well as the effectiveness of our newly proposed QOL dictionary.
Funder
KDDI Foundation Research Grant Program 2019
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献