Image Upscaling with Deep Machine Learning for Energy-Efficient Data Communications

Author:

Tovar Nathaniel1,Kwon Sean (Seok-Chul)1ORCID,Jeong Jinseong2ORCID

Affiliation:

1. Department of Electrical Engineering, California State University, Long Beach, CA 90840, USA

2. School of Electrical and Computer Engineering, University of Seoul, Seoul 02504, Republic of Korea

Abstract

Advanced algorithms of image quality enhancement have been attracting substantial attention recently due to the successful business model of video streaming services. The extremely high image quality in video streaming demands a significant increase in the transmit data rate. In turn, the required ultrahigh data rate causes the saturation of the video streaming service network if there is no remedy for this situation. Compression algorithms have contributed to the energy-efficient transmission of data; however, they have almost reached the upper bound. The demand for ultrahigh image quality by the user is significantly increasing. Meanwhile, minimizing data transmission is inevitable in energy-efficient communications. Therefore, to improve energy efficiency, we propose to decrease the image resolution at the transmitter (Tx) and upscale the image at the receiver (Rx). However, standard upscaling does not yield ultrahigh-quality images. Deep machine learning contributes to image super-resolution techniques with the cost of enormous time and resources at the user end. Hence, it is inappropriate for real-time applications. With this motivation, this paper proposes a deep machine learning-based real-time image super-resolution with a residual neural network on the prevalent resources at the user end. The proposed scheme provides better quality than conventional image upscaling such as interpolation. The comprehensive simulation verifies that our scheme substantially outperforms the conventional methods, utilizing the seven-layer residual neural network.

Funder

2019 Research Fund of the University of Seoul for Jinseong Jeong

CSULB Foundation Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3