Deep-Learning-Based Recovery of Frequency-Hopping Sequences for Anti-Jamming Applications

Author:

Zhu Jiawei,Wang Anqiang,Wu Wei,Zhao Zhijin,Xu Yuting,Lei Rong,Yue KeqiangORCID

Abstract

The frequency-hopping communication system has been widely used in anti-jamming communication due to its anti-interception and anti-jamming performance. With the increasingly complex electromagnetic environment, the frequency-hopping communication system needs more flexible frequency-hopping patterns to deal with interferences, which brings great challenges to the communication receiver. In this paper, an intelligent receiving scheme of frequency-hopping sequences is proposed, which combines time–frequency analysis with deep learning to realize an intelligent estimation of frequency-hopping sequences. A hybrid network module is designed by combining a convolutional neural network (CNN) with a gated recurrent unit (GRU). In the proposed network module, the combination of a residual network (ResNet) and squeeze and extraction (SE) improves the feature extraction and expression capabilities of the CNN network. The GRU network is proposed to solve the problem of dealing with signals with variant input lengths. A transfer learning scheme is further proposed to deal with communications systems with different frequency-hopping sets. Simulation results show that the proposed method has strong generalization ability and robustness, and the bit error rate (BER) performance of intelligent receiving is close to the receiving performance under ideal conditions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Frequency Hopping Prediction Model Based on TCN-GRU;IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences;2024-09-01

2. A tactical data link model based on CCSK-FMSK;Physical Communication;2024-06

3. Data augmentation based face anti-spoofing (FAS) scheme using deep learning techniques;Journal of Intelligent & Fuzzy Systems;2023-11-04

4. Intelligent Frequency Decision Communication with Two-Agent Deep Reinforcement Learning;Electronics;2023-11-03

5. Anti-Reactive Jamming Technology Based on Jamming Utilization;KSII Transactions on Internet and Information Systems;2023-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3