Quality-Driven Dual-Branch Feature Integration Network for Video Salient Object Detection

Author:

Zhou Xiaofei1ORCID,Gao Hanxiao1,Yu Longxuan2,Yang Defu1,Zhang Jiyong1ORCID

Affiliation:

1. School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China

2. School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China

Abstract

Video salient object detection has attracted growing interest in recent years. However, some existing video saliency models often suffer from the inappropriate utilization of spatial and temporal cues and the insufficient aggregation of different level features, leading to remarkable performance degradation. Therefore, we propose a quality-driven dual-branch feature integration network majoring in the adaptive fusion of multi-modal cues and sufficient aggregation of multi-level spatiotemporal features. Firstly, we employ the quality-driven multi-modal feature fusion (QMFF) module to combine the spatial and temporal features. Particularly, the quality scores estimated from each level’s spatial and temporal cues are not only used to weigh the two modal features but also to adaptively integrate the coarse spatial and temporal saliency predictions into the guidance map, which further enhances the two modal features. Secondly, we deploy the dual-branch-based multi-level feature aggregation (DMFA) module to integrate multi-level spatiotemporal features, where the two branches including the progressive decoder branch and the direct concatenation branch sufficiently explore the cooperation of multi-level spatiotemporal features. In particular, in order to provide an adaptive fusion for the outputs of the two branches, we design the dual-branch fusion (DF) unit, where the channel weight of each output can be learned jointly from the two outputs. The experiments conducted on four video datasets clearly demonstrate the effectiveness and superiority of our model against the state-of-the-art video saliency models.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3