Investigation of Machine Learning Methods for Predictive Maintenance of the Ultra-High-Pressure Reactor in a Polyethylene-Vinyl Acetate Production Process

Author:

Pan Shih-Jie1,Tsai Meng-Lin1,Chen Cheng-Liang1,Lin Po Ting2ORCID,Lee Hao-Yeh3ORCID

Affiliation:

1. Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan

2. Department of Mechanical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan

3. Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan

Abstract

Ethylene-Vinyl Acetate (EVA) copolymer was synthesized from ethylene and vinyl acetate at high temperatures and ultra-high pressures. In this condition, any reactor disturbances, such as process or mechanical faults, may trigger the run-away decomposition reaction. This paper proposes a procedure for constructing a conditional health status prediction structure that uses a virtual health index (HI) to monitor the reactor bearing’s remaining useful life (RUL). The piecewise linear remaining useful life (PL-RUL) model was constructed by machine learning regression methods trained on the vibration and distributed control system (DCS) datasets. This process consists of using Welch’s power spectrum density transformation and machine learning regression methods to fit the PL-RUL model, following a health status construction process. In this research, we search for and determine the optimum value for the remaining useful life period (TRUL), a key parameter for the PL-RUL model for the system, as 70 days. This paper uses four-fold cross-validation to evaluate seven different regression algorithms and concludes that the Extremely randomized trees (ERTs) is the best machine learning model for predicting PL-RUL, with an average relative absolute error (RAE) of 0.307 and a Linearity of 15.064. The Gini importance of the ensemble trees is used to identify the critical frequency bands and prepare them for additional dimensionality reduction. Compared to two frequency band selection techniques, the RAE and Linearity prediction results can be further improved to 0.22 and 8.38.

Funder

National Science and Technology Council, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3