BadDGA: Backdoor Attack on LSTM-Based Domain Generation Algorithm Detector

Author:

Zhai You1,Yang Liqun2,Yang Jian1ORCID,He Longtao3,Li Zhoujun1

Affiliation:

1. State Key Lab of Software Development Environment, Beihang University, Beijing 100191, China

2. School of Cyber Science and Technology, Beihang University, Beijing 100191, China

3. National Computer Network Emergency Response Technical Team/Coordination Center of China, Beijing 100029, China

Abstract

Due to the outstanding performance of deep neural networks (DNNs), many researchers have begun to transfer deep learning techniques to their fields. To detect algorithmically generated domains (AGDs) generated by domain generation algorithm (DGA) in botnets, a long short-term memory (LSTM)-based DGA detector has achieved excellent performance. However, the previous DNNs have found various inherent vulnerabilities, so cyberattackers can use these drawbacks to deceive DNNs, misleading DNNs into making wrong decisions. Backdoor attack as one of the popular attack strategies strike against DNNs has attracted widespread attention in recent years. In this paper, to cheat the LSTM-based DGA detector, we propose BadDGA, a backdoor attack against the LSTM-based DGA detector. Specifically, we offer four backdoor attack trigger construction methods: TLD-triggers, Ngram-triggers, Word-triggers, and IDN-triggers. Finally, we evaluate BadDGA on ten popular DGA datasets. The experimental results show that under the premise of 1‰ poisoning rate, our proposed backdoor attack can achieve a 100% attack success rate to verify the effectiveness of our method. Meanwhile, the model’s utility on clean data is influenced slightly.

Funder

National Natural Science Foundation of China

Key Laboratory of Power Grid Automation of China Southern Power Grid Co., Ltd.

State Key Laboratory of Software Development Environment

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3