Lightweight-BIoV: Blockchain Distributed Ledger Technology (BDLT) for Internet of Vehicles (IoVs)

Author:

Laghari Asif Ali1ORCID,Khan Abdullah Ayub12ORCID,Alkanhel Reem3ORCID,Elmannai Hela3ORCID,Bourouis Sami4ORCID

Affiliation:

1. Department of Computer Science, Sindh Madressatul Islam University, Karachi 74000, Pakistan

2. Department of Computer Science and Information Technology, Benazir Bhutto Shaheed University Lyari, Karachi 75660, Pakistan

3. Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

4. Department of Information Technology, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

Abstract

The vast enhancement in the development of the Internet of Vehicles (IoV) is due to the impact of the distributed emerging technology and topology of the industrial IoV. It has created a new paradigm, such as the security-related resource constraints of Industry 5.0. A new revolution and dimension in the IoV popup raise various critical challenges in the existing information preservation, especially in node transactions and communication, transmission, trust and privacy, and security-protection-related problems, which have been analyzed. These aspects pose serious problems for the industry to provide vehicular-related data integrity, availability, information exchange reliability, provenance, and trustworthiness for the overall activities and service delivery prospects against the increasing number of multiple transactions. In addition, there has been a lot of research interest that intersects with blockchain and Internet of Vehicles association. In this regard, the inadequate performance of the Internet of Vehicles and connected nodes and the high resource requirements of the consortium blockchain ledger have not yet been tackled with a complete solution. The introduction of the NuCypher Re-encryption infrastructure, hashing tree and allocation, and blockchain proof-of-work require more computational power as well. This paper contributes in two different folds. First, it proposes a blockchain sawtooth-enabled modular architecture for protected, secure, and trusted execution, service delivery, and acknowledgment with immutable ledger storage and security and peer-to-peer (P2P) network on-chain and off-chain inter-communication for vehicular activities. Secondly, we design and create a smart contract-enabled data structure in order to provide smooth industrial node streamlined transactions and broadcast content. Substantially, we develop and deploy a hyperledger sawtooth-aware customized consensus for multiple proof-of-work investigations. For validation purposes, we simulate the exchange of information and related details between connected devices on the IoV. The simulation results show that the proposed architecture of BIoV reduces the cost of computational power down to 37.21% and the robust node generation and exchange up to 56.33%. Therefore, only 41.93% and 47.31% of the Internet of Vehicles-related resources and network constraints are kept and used, respectively.

Funder

Princess Nourah bint Abdulrahman University

Taif University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3