Quo Vadis Machine Learning-Based Systems Condition Prognosis?—A Perspective

Author:

Benbouzid MohamedORCID,Berghout TarekORCID

Abstract

Data-driven prognostics and health management (PHM) is key to increasing the productivity of industrial processes through accurate maintenance planning. The increasing complexity of the systems themselves, in addition to cyber-physical connectivity, has brought too many challenges for the discipline. As a result, data complexity challenges have been pushed back to include more decentralized learning challenges. In this context, this perspective paper describes these challenges and provides future directions based on a relevant state-of-the-art review.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference25 articles.

1. Berghout, T., Mouss, M.-D., Mouss, L., and Benbouzid, M. (2022). ProgNet: A Transferable Deep Network for Aircraft Engine Damage Propagation Prognosis under Real Flight Conditions. Aerospace, 10.

2. Machinery health prognostics: A systematic review from data acquisition to RUL prediction;Lei;Mech. Syst. Signal Process.,2018

3. Berghout, T., and Benbouzid, M. (2022). A Systematic Guide for Predicting Remaining Useful Life with Machine Learning. Electronics, 11.

4. Machine Learning for Cybersecurity in Smart Grids: A Comprehensive Review-based Study on Methods, Solutions, and Prospects;Berghout;Int. J. Crit. Infrastruct. Prot.,2022

5. Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso, E., Chebel-Morello, B., Zerhouni, N., and Varnier, C. (2012, January 18–21). PRONOSTIA: An experimental platform for bearings accelerated degradation tests. Proceedings of the IEEE International Conference on Prognostics and Health Management, PHM’12, Denver, CO, USA.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rotating machine bearing health prognosis using a data driven approach based on KS‐density and BiLSTM;IET Science, Measurement & Technology;2024-08-04

2. Mapping a Machine Learning Path Forward for Tidal Stream Turbines Biofouling Detection and Estimation;IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society;2023-10-16

3. Tidal Stream Turbine Biofouling Detection and Estimation: A Review-Based Roadmap;Journal of Marine Science and Engineering;2023-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3