Visualization Technology and Deep-Learning for Multilingual Spam Message Detection

Author:

Lee Hwabin1,Jeong Sua1ORCID,Cho Seogyeong1,Choi Eunjung1

Affiliation:

1. Department of Information Security, Seoul Women’s University, Nowon-gu, Seoul 01797, Republic of Korea

Abstract

Spam detection is an essential and unavoidable problem in today’s society. Most of the existing studies have used string-based detection methods with models and have been conducted on a single language, especially with English datasets. However, in the current global society, research on languages other than English is needed. String-based spam detection methods perform different preprocessing steps depending on language type due to differences in grammatical characteristics. Therefore, our study proposes a text-processing method and a string-imaging method. The CNN 2D visualization technology used in this paper can be applied to datasets of various languages by processing the data as images, so they can be equally applied to languages other than English. In this study, English and Korean spam data were used. As a result of this study, the string-based detection models of RNN, LSTM, and CNN 1D showed average accuracies of 0.9871, 0.9906, and 0.9912, respectively. On the other hand, the CNN 2D image-based detection model was confirmed to have an average accuracy of 0.9957. Through this study, we present a solution that shows that image-based processing is more effective than string-based processing for string data and that multilingual processing is possible based on the CNN 2D model.

Funder

Seoul Women's University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel deep learning model-based optimization algorithm for text message spam detection;The Journal of Supercomputing;2024-05-02

2. Efficient Email Spam Classification with N-gram Features and Ensemble Learning;International Journal of Scientific Research in Computer Science, Engineering and Information Technology;2024-03-28

3. Pclf: Parallel cnn-lstm fusion model for sms spam filtering;BIO Web of Conferences;2024

4. A Comprehensive Review on Email Spam Classification with Machine Learning Methods;International Journal of Scientific Research in Computer Science, Engineering and Information Technology;2023-11-11

5. Evaluation of Hand-Crafted Features for the Classification of Spam SMS in Dravidian Languages;Data Science and Network Engineering;2023-11-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3