Industry 4.0-Based Framework for Real-Time Prediction of Output Power of Multi-Emitter Laser Modules during the Assembly Process

Author:

Markatos Nikolaos Grigorios1ORCID,Mousavi Alireza1ORCID,Pippione Giulia2,Paoletti Roberto2ORCID

Affiliation:

1. College of Engineering, Design and Physical Sciences, Brunel University, Uxbridge UB8 3PH, UK

2. Convergent Photonics Italia S.r.l, Via Schiaparelli 12, 10148 Torino, Italy

Abstract

The challenges of defects in manufacturing and assembly processes in optoelectronic industry continue to persist. Defective products cause increased time to completion (cycle time), energy consumption, cost, and loss of precious material. A complex laser assembly process is studied with the aim of minimising the generation of defective laser modules. Subsequently, relevant data were gathered to investigate machine learning and artificial intelligence methods to predict the output beam power of the module during the assembly process. The assembly process was divided into a number of chain steps, where we implemented a bespoke framework of hybrid feature selection method alongside artificial neural networks (ANNs) to formulate the statistical inferences. A review of existing learning methods in manufacturing and assembly processes enabled us to select XGBoost and random forest regression (RFR) as the two methods to be compared with ANN, based on their capabilities; ANN outperformed both of them, as it avoided overfitting and scored similar test metrics in the majority of the assembly steps. The results of the proposed solution have been validated in a real production dataset, even showing good predictive capability in the early steps of the assembly process where the available information is limited. Furthermore, the transferability of the framework was validated by applying the proposed framework to another product that follows a similar assembly process. The results indicated that the proposed framework has the potential to serve as the foundation for further research on laser modules’ sophisticated and multi-step assembly lines.

Funder

European Union’s Horizon 2020 research and innovation programme

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3