Flexible Agent Architecture: Mixing Reactive and Deliberative Behaviors in SPADE

Author:

Palanca Javier1ORCID,Rincon Jaime Andres1ORCID,Carrascosa Carlos1ORCID,Julian Vicente Javier1ORCID,Terrasa Andrés1ORCID

Affiliation:

1. Valencian Research Institute for Artificial Intelligence (VRAIN), Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain

Abstract

Over the years, multi-agent systems (MAS) technologies have shown their usefulness in creating distributed applications focused on autonomous intelligent processes. For this purpose, many frameworks for supporting multi-agent systems have been developed, normally oriented towards a particular type of agent architecture (e.g., reactive or deliberative agents). It is common, for example, for a multi-agent platform supporting the BDI (Belief, Desire, Intention) model to provide this agent model exclusively. In most of the existing agent platforms, it is possible to develop either behavior-based agents or deliberative agents based on the BDI cycle, but not both. In this sense, there is a clear lack of flexibility when agents need to perform part of their decision-making process according to the BDI paradigm and, in parallel, require some other behaviors that do not need such a deliberation process. In this context, this paper proposes the introduction of an agent architecture called Flexible Agent Architecture (FAA) that supports the development of multi-agent systems, where each agent can define its actions in terms of different computational models (BDI, procedural, neural networks, etc.) as behaviors, and combine these behaviors as necessary in order to achieve its goals. The FAA architecture has been integrated into a real agent platform, SPADE, thus extending its original capabilities in order to develop applications featuring reactive, deliberative, and hybrid agents. The integration has also adapted the existing facilities of SPADE to all types of behaviors inside agents, for example, the coordination of agents by using a presence notification mechanism, which is a unique feature of SPADE. The resulting SPADE middleware has been used to implement a case study in a simulated robotics scenario, also shown in the paper.

Funder

Spanish Government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of the Mathematical Model, Properties, Classes and other Features of Software Agent Development;Èlektronnoe modelirovanie;2024-04-10

2. Towards Agrirobot Digital Twins: Agri-RO5—A Multi-Agent Architecture for Dynamic Fleet Simulation;Electronics;2023-12-23

3. Development of Verification Model for Intelligence of Multiagent Systems;2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS);2023-09-07

4. Combat capability graphical description method by ontology extension UML;Second International Conference on Applied Statistics, Computational Mathematics, and Software Engineering (ASCMSE 2023);2023-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3