Three-Level Inverter-PMSM Model Predictive Current Control Based on the Extended Control Set

Author:

Gu Xin1ORCID,Xu Wenyuan1,Zhang Guozheng1,Chen Wei1,Jin Xuefeng1

Affiliation:

1. School of Electrical Engineering, Tiangong University, Tianjin 300387, China

Abstract

In the neutral point clamped (NPC) three-level inverter-permanent magnet synchronous motor system, traditional model predictive current control (MPCC) uses the system predictive model to traverse the 27 basic voltage vectors, to achieve the d-q axis current component and neutral point voltage of the multi-objective optimal control. Finite control set model predictive control predicts the state change of the control target at future moments based on a finite number of switching states of the inverter. The control principle of this method is simple and easy to implement, but the control effectiveness of this control strategy is limited because only one basic vector can be selected as the optimum output per control period. In this paper, a model predictive current control strategy based on an extended control set (ECS-MPCC) is proposed, which can improve the control performance of the system by extending the control set to select multiple vectors in a single control period compared to the traditional strategy. In addition, to address the disadvantage of extending virtual space vectors leading to an increase in computation, this paper proposes a fast search method for optimal vector based on region reduction. The proposed method avoids the optimization process traversing all virtual space vectors, thus enabling a fast search for the optimal vector. The experimental results show that the proposed control strategy has good steady-state and dynamic performance.

Funder

The National Natural Science Foundation of China

The Key Project of Tianjin Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3