An Analysis of Battery Degradation in the Integrated Energy Storage System with Solar Photovoltaic Generation

Author:

Lee Munsu,Park Jinhyeong,Na Sun-IkORCID,Choi Hyung Sik,Bu Byeong-Sik,Kim Jonghoon

Abstract

Renewable energy generation and energy storage systems are considered key technologies for reducing greenhouse gas emissions. Energy system planning and operation requires more accurate forecasts of intermittent renewable energy resources that consider the impact of battery degradation on the system caused by the accumulation of charging and discharging cycles. In this study, a statistical model is presented for forecasting a day-ahead photovoltaic (PV) generation considering solar radiation and weather parameters. In addition, the technical performance of energy storage systems (ESS) should be evaluated by considering battery degradation that occurs during the charge and discharge cycles of the battery. In this study, a battery degradation model based on the data-driven method is used. Based on a suitable forecasting model, ESS scheduling is performed to charge the maximum amount of PV generation and discharge for the self-consumption of the customer load when PV generation ends. Since the battery is highly dependent on operating conditions such as depth of discharge, state of charge and temperature, two different ESS charge and discharge modes are proposed. From the simulation with the battery degradation model using parameters derived from experiments, we show that the battery is degraded along with charging cycles during testing periods. Variations in state of health are observed owing to the different characteristics of the battery according to the ESS operation modes, which are divided into the low and high SOC. Through experimental validation, it is proved that the state of charge (SOC), 0.45 is the optimal threshold that can determine the low and high SOC. Finally, the simulation results lead to the conclusion that the battery degradation in different operation modes should be taken into account to extend the end of life efficiently.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3