Abstract
Parkinson’s disease (PD) is a neurodegenerative disease that impacts the neural, physiological, and behavioral systems of the brain, in which mild variations in the initial phases of the disease make precise diagnosis difficult. The general symptoms of this disease are slow movements known as ‘bradykinesia’. The symptoms of this disease appear in middle age and the severity increases as one gets older. One of the earliest signs of PD is a speech disorder. This research proposed the effectiveness of using supervised classification algorithms, such as support vector machine (SVM), naïve Bayes, k-nearest neighbor (K-NN), and artificial neural network (ANN) with the subjective disease where the proposed diagnosis method consists of feature selection based on the filter method, the wrapper method, and classification processes. Since just a few clinical test features would be required for the diagnosis, a method such as this might reduce the time and expense associated with PD screening. The suggested strategy was compared to PD diagnostic techniques previously put forward and well-known classifiers. The experimental outcomes show that the accuracy of SVM is 87.17%, naïve Bayes is 74.11%, ANN is 96.7%, and KNN is 87.17%, and it is concluded that the ANN is the most accurate one with the highest accuracy. The obtained results were compared with those of previous studies, and it has been observed that the proposed work offers comparable and better results.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献