Abstract
This paper presents an integrated circuit for time-based electrical impedance spectroscopy (EIS) of sensors. The circuit exploits maximum-length sequences (MLS) in order to perform a broadband excitation of the sensors under test. Therefore, the measured time-domain EIS is obtained by cross-correlating the input with the output of the analog front end (AFE). Unlike the conventional digital approach, the cross-correlation operation is performed in the analog domain. This leads to a lower RMS error in the measured time-domain EIS since the signal processing is not affected by the quantization noise of the analog-to-digital converter (ADC). It also relaxes the sampling frequency of the ADC leading, along with the lack of random access memory (RAM) usage, to a reduced circuit complexity. Theoretical concepts about the circuit’s design and operation are presented, with an emphasis on the thermal noise phenomenon. The simulated performances are shown by testing a sensor’s equivalent model composed of a 50 kΩ resistor in parallel with a 100 pF capacitor. A time-based EIS output of 255 points was obtained with a maximum tested frequency of 500 kHz and a simulated RMS error of 0.0177% (or 177 ppm).
Funder
Apulia Region, Italy, through the SMEA PON Project
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献