Optimizable Control Barrier Functions to Improve Feasibility and Add Behavior Diversity while Ensuring Safety

Author:

Li Shilei,Yuan Zhimin,Chen Yun,Luo Fang,Yang Zhichao,Ye Qing,Fu Wei,Fu Yu

Abstract

Ensuring safety while retaining maximum performance is a basic requirement for automatic cyber-physical systems, especially for safety-critical applications. A quadratic programming optimization framework called MPC-CBF has recently been presented, which directly unifies model predictive control (MPC) with control barrier functions (CBFs) over the prediction time horizon. However, the conservative nature of CBFs can lead to feasibility problems in real applications. Based on the analysis of the role of the decay rate and the conservative accumulation phenomenon in standard CBF formulations, this paper proposes to directly optimize CBF constraints within the MPC framework. By regarding CBFs as a safety restriction level indicator and an optimizable constraint within the MPC framework, the trade-off between feasibility and safety can be adaptively optimized. The proposed Optimizable CBF (OCBF) model removes the hyper-parameters selection problem in standard CBFs and can adaptively adjust the safety restriction level and increase behavior diversity by adding the corresponding objects in the cost function in MPC. To eliminate the accumulation effects of actual values of the CBF constraints in previous time steps, this paper further proposes a General OCBF (GOCBF) formulation. Compared with existing formulations, the safety margin defined in our GOCBF has intuitive physical meanings and thus provides a more flexible and intuitive mechanism to compromise different objects in terms of ensuring safety while not undermining basic feasibility. Experimental results demonstrate that our algorithm provides a more flexible and intuitive mechanism to achieve this, thus improving feasibility and adding behavior diversity in the MPC-CBF framework.

Funder

National Defense Science and Technology Foundation Enhancement Plan

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3