Multi-Task Learning for Scene Text Image Super-Resolution with Multiple Transformers

Author:

Honda KosukeORCID,Kurematsu Masaki,Fujita HamidoORCID,Selamat AliORCID

Abstract

Scene text image super-resolution aims to improve readability by recovering text shapes from low-resolution degraded text images. Although recent developments in deep learning have greatly improved super-resolution (SR) techniques, recovering text images with irregular shapes, heavy noise, and blurriness is still challenging. This is because networks with Convolutional Neural Network (CNN)-based backbones cannot sufficiently capture the global long-range correlations of text images or detailed sequential information about the text structure. In order to address this issue, this paper proposes a Multi-task learning-based Text Super-resolution (MTSR) Network to approach this problem. MTSR is a multi-task architecture for image reconstruction and SR. It uses transformer-based modules to transfer complementary features of the reconstruction model, such as noise removal capability and text structure information, to the SR model. In addition, another transformer-based module using 2D positional encoding is used to handle irregular deformations of the text. The feature maps generated from these two transformer-based modules are fused to attempt improvement of the visual quality of images with heavy noise, blurriness, and irregular deformations. Experimental results on the TextZoom dataset and several scene text recognition benchmarks show that our MTSR significantly improves the accuracy of existing text recognizers.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3