Simultaneous Beam Forming and Focusing Using a Checkerboard Anisotropic Surface

Author:

Park Jeong-HyunORCID,Lee Jae-GonORCID

Abstract

A novel design method of simultaneous beam forming and focusing using a checkerboard anisotropic surface is proposed and verified in this paper. The proposed multibeam control regardless of far and near regions can easily be achieved through a rearrangement of the checkerboard structure. The unit cell of the utilized anisotropic surface consists of two identical metallic structures divided by a dielectric material. When the EM wave with a circular polarization (CP) is incident on the unit cell, the maximum transmission phase variation of the unit cell is 360 degrees by half rotation of the unit cell. A microstrip patch antenna with trimmed corners is used to launch the CP wave and the distance between the microstrip patch antenna and anisotropic surface is about 2 wavelengths considering the optimized spillover and taper efficiencies. After designing each anisotropic surface for beam forming and focusing, the unit cells of the surface are rearranged in the form of a checkerboard. The feasibility of the proposed method is confirmed by full-wave simulation and measurement for anisotropic surface with a beam forming angle of 30 degrees and beam focusing point 60 mm away from center at 5.8 GHz. The forming angle and focal length are simulated and measured to be 28 degrees and about 65 mm, respectively.

Funder

National Research Foundation of Korea

Innovative Human Resource Development for Local Intellectualization

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference24 articles.

1. Tesla, N. (1914). Apparatus for Transmitting Electrical Energy. (1,119,732), U.S. Patent.

2. Wireless power transfer via strongly coupled magnetic resonances;Science,2007

3. A new approach to power supplies for robots;IEEE Trans. Ind. Appl.,1991

4. Wireless transmission of power and information for cableless linear motor drive;IEEE Trans. Power Electron.,2000

5. Wireless power transfer system with enhanced efficiency by using frequency reconfigurable metamaterial;Sci. Rep.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3