MM-LMF: A Low-Rank Multimodal Fusion Dangerous Driving Behavior Recognition Method Based on FMCW Signals

Author:

Hao Zhanjun,Li ZepeiORCID,Dang Xiaochao,Ma Zhongyu,Liu Gaoyuan

Abstract

Multimodal research is an emerging field of artificial intelligence, and the analysis of dangerous driving behavior is one of the main application scenarios in the field of multimodal fusion. Aiming at the problem of data heterogeneity in the process of behavior classification by multimodal fusion, this paper proposes a low-rank multimodal data fusion method, which utilizes the complementarity between data modalities of different dimensions in order to classify and identify dangerous driving behaviors. This method uses tensor difference matrix data to force low-rank fusion representation, improves the verification efficiency of dangerous driving behaviors through multi-level abstract tensor representation, and solves the problem of output data complexity. A recurrent network based on the attention mechanism, AR-GRU, updates the network input parameter state and learns the weight parameters through its gated structure. This model improves the dynamic connection between modalities on heterogeneous threads and reduces computational complexity. Under low-rank conditions, it can quickly and accurately classify and identify dangerous driving behaviors and give early warnings. Through a large number of experiments, the accuracy of this method is improved by an average of 1.76% compared with the BiLSTM method and the BiGRU-IAAN method in the training and verification of the self-built dataset.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3