Abstract
To address the technical shortcomings of conventional histogram equalization (HE), such as over-enhancement and artifacts, we propose a histogram-constrained and contrast-tunable HE technique for digital image enhancement. Firstly, the input image histogram is partitioned into two parts, the main histogram and the constrained histogram, by a cumulative probability density threshold; second, the main histogram is redistributed equally in the whole grayscale range; and finally, the nonlinearity of the constrained histogram is mapped to the main histogram. The experimental averages show that the values of the two metrics, information entropy and MS-SSIM, processed by the algorithms in this paper, are more accurate compared to the other six excellent algorithms.
Funder
National Key Research and Development Program of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献