Abstract
A wide-speed-range sensorless control for an IPMSM is deeply studied in this paper, which combines the high-frequency injection (HFI) method and sliding-mode observer (SMO) method. At low-speed range, a rotating high-frequency voltage signal is injected into the IPMSM; the rotor position can be estimated by the HFI method based on the saliency of the IPMSM. At high-speed range, an SMO method based on the extended back electromotive force (EMF) of the IPMSM is utilized to estimate the rotor position. Furthermore, to blend the positions estimated by these two methods, a speed-dependent weight function is designed. The steady-state and dynamic performance of the wide-speed sensorless control are investigated by experiments. In high-speed range, the position estimation errors of the SMO method at different operation points are smaller than 6 el.deg.; in low-speed range, the position estimation errors of the HFI method at different operation points are smaller than 15 el.deg.; and during the transition process, the IPMSM can switch smoothly between the HFI-based and SMO-based sensorless control methods.
Funder
Natural Science Basic Research Program of Shaanxi and Aero Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献