A Three-Phase CDRT Strategy Based on Successive Relay for Smart Grid

Author:

Luo Mofan,Liu Geng,Ren Jie,Yao Liang,Liu Ying,Song Jianjian,Chen Jian,Zhou Yuchen

Abstract

In the vision of the future smart grid, the communication is often featured by wide range, massive connect, and low latency, which poses new requirements on the reachable distance and spectral efficiency of wireless communication. In this regard, this paper studies ergodic capacity enhancement by applying successive relay (SR) technology to a non-orthogonal multiple access (NOMA) based Coordinated Direct and Relay transmission (CDRT) system, where a base station (BS) communicates with a near user (NU) directly while communicating with a far user (FU) with the help of a group of relays. We design a novel three-phase CDRT strategy based on SR technology to overcome the half-duplex (HD) constrain without introducing additional noise. The proposed strategy can improve the spectral efficiency while expanding the communication coverage, which to some extent improves the communication quality of the edge users of the smart grid and reduces the communication delay. To analyze the performance of the proposed three-phase CDRT strategy, an exact and closed-form expression for ergodic capacity of the NU, the FU, and the whole system is derived. Finally, the numerical and simulation results validate the analysis results and show that the proposed strategy can improve the ergodic capacity of FU without reducing the capacity scaling of NU.

Funder

the Laboratory Open Fund of Beijing Smart-chip Microelectronics Technology Co., Ltd., and the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference19 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3