Quaternion Attitude Control System of Highly Maneuverable Aircraft

Author:

Gołąbek Michał,Welcer Michał,Szczepański CezaryORCID,Krawczyk Mariusz,Zajdel AlbertORCID,Borodacz Krystian

Abstract

In the era of rapid advancements in manned and unmanned aviation and robotics, there is a need for high-performance, robust attitude control of highly maneuverable fixed-wing aircraft, both manned and unmanned (UAVs). This paper presents an extension to research on spacecraft attitude control. The article extends existing concepts and applies them to the control problem of aircraft operating in Earth’s atmosphere. First, a general concept of quaternions is presented. Next, the attitude controller’s architecture is discussed. The controller synthesis is described using quaternion algebra. The quaternion-based attitude controller is then compared with a classical Euler-based attitude controller. The methodology for comparison and performance evaluation of both controllers is described. Lastly, the results of the simulations and a comparison of the two controllers are presented and discussed. The presented control scheme outperforms classical methods based on Euler angles, particularly at the aircraft’s high pitch and roll angles.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3