Electrical Response Analysis of a Piezoelectric Energy Harvester Power Source Based on Electromechanical Parameters

Author:

Perez-Alfaro IreneORCID,Gil-Hernandez DanielORCID,Hernando Eduardo,Quero FernandoORCID,Bernal Carlos

Abstract

A piezoelectric energy harvester generator is a device capable of transforming environmental mechanical energy into electrical energy. The piezoelectric electromechanical parameters determine the maximum electrical power which is able to be transferred to an electric load. In this research work, an exhaustive study of the electromechanical parameters related to the piezoelectric material is carried out, modeling them as components of an electrical circuit, in order to analyze their influence on the transmitted power. On the other hand, some electrical loads are simulated to determine different matrix scenarios for a model developed by state-space equations in the Laplace transform domain. The results obtained have allowed to know how the piezoelectric material properties and mechanical characteristics influence the electrical power output of the energy harvester generator and the energy transmission behavior for different electric loads. The conclusions show how the different electromechanical parameters are related to each other, and how their combination transforms the mechanical environmental energy into the required electrical energy. The novelty of this research is the presentation of a model capable of obtaining the optimized working point of the harvester, taking into account not only the electric loads and current demands but also the piezoelectric material parameters.

Funder

European Commission

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Physics-informed neural network for parameter identification in a piezoelectric harvester;Active and Passive Smart Structures and Integrated Systems XVIII;2024-05-09

2. Study of mass effect in electromechanical modelling of piezoelectric energy harvesters.;2023 3rd International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME);2023-07-19

3. Overview of Energy Harvesting Technologies Used in Road Vehicles;Energies;2023-04-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3