Human Perception Intelligent Analysis Based on EEG Signals

Author:

Geng Bingrui,Liu Ke,Duan Yiping

Abstract

The research on brain cognition provides theoretical support for intelligence and cognition in computational intelligence, and it is further applied in various fields of scientific and technological innovation, production and life. Use of the 5G network and intelligent terminals has also brought diversified experiences to users. This paper studies human perception and cognition in the quality of experience (QoE) through audio noise. It proposes a novel method to study the relationship between human perception and audio noise intensity using electroencephalogram (EEG) signals. This kind of physiological signal can be used to analyze the user’s cognitive process through transformation and feature calculation, so as to overcome the deficiency of traditional subjective evaluation. Experimental and analytical results show that the EEG signals in frequency domain can be used for feature learning and calculation to measure changes in user-perceived audio noise intensity. In the experiment, the user’s noise tolerance limit for different audio scenarios varies greatly. The noise power spectral density of soothing audio is 0.001–0.005, and the noise spectral density of urgent audio is 0.03. The intensity of information flow in the corresponding brain regions increases by more than 10%. The proposed method explores the possibility of using EEG signals and computational intelligence to measure audio perception quality. In addition, the analysis of the intensity of information flow in different brain regions invoked by different tasks can also be used to study the theoretical basis of computational intelligence.

Funder

Fundamental Research Funds for the Central University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3