Accurate Design of Microwave Filter Based on Surrogate Model-Assisted Evolutionary Algorithm

Author:

Zhang Yongliang,Wang Xiaoli,Wang Yanxing,Yan Ningchaoran,Feng Linping,Zhang Lu

Abstract

Filter optimization problems involve time-consuming simulations and many variables in the design. These problems require a large amount of computation. This paper proposes an adaptive online updating 1D convolutional autoencoders (AOU-1D-CAE) surrogate model for solving this computationally expensive problem. In the optimization process, an adaptive update surrogate mapping between input variables and output objectives is constructed within the surrogate model AOU-1D-CAE framework. AOU-1D-CAE can replace electromagnetic (EM) simulation software for data collection, and select and automatically use the accumulated data as training samples to train the AOU-1D-CAE surrogate model. With more and more training samples, the learning ability of the surrogate model is also becoming stronger and stronger. The experimental results show that the data collection efficiency of AOU-1D-CAE is greatly improved, and the automatic update of the sample set improves the prediction performance of the surrogate model. In this paper, the optimization framework is AOU-1D-CAE-assisted particle swarm optimization (PSO), and the surrogate model assists PSO to find the global optimal solution. In the PSO stage, PSO automatically updates and saves the optimal solution, and takes the optimal solution of each stage as the initial solution of the next optimization stage to avoid falling into the local optimal solution. The optimization time is greatly saved and the optimization efficiency is improved. The continuous iteration of PSO also improves the prediction accuracy of the surrogate model. The efficiency of the proposed surrogate model is demonstrated by using two cavity filters as examples.

Funder

National Natural Science Foundation of China (NSFC) under Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3