Health Monitoring of Conveyor Belt Using UHF RFID and Multi-Class Neural Networks

Author:

Zohra Fatema Tuz,Salim Omar,Masoumi HosseinORCID,Karmakar Nemai C.,Dey ShuvashisORCID

Abstract

Conveyor belts in mining sites are prone to cracks, which leads to dramatic degradation of overall system performance and the breakdown of operation. Crack detection using radio frequency identification (RFID) sensing technology is recently proposed to provide robust and low-cost health monitoring systems for conveyor belts. The intelligent machine learning (ML) technique is one of the most promising solutions for crack detection and successful implementation within the IoT paradigm. This paper presents a conveyor belt structural health monitoring (SHM) model using ML and Internet of Things (IoT) connectivity. The model is extensively tested, and the classification is conducted based on simulated data obtained from an Ultra High Frequency (UHF) RFID sensor. Here, the sensor is laid on a belt, and the data are obtained at different crack orientations of vertical, horizontal, and diagonal cracks, for varying crack widths of 0.5 to 5 mm at 10 different locations on the sensor. The ML model is tested with different input features and training algorithms, and their performances are compared and analysed to identify the superior input feature and training algorithm. This method produces high accuracy in determining crack width, orientation, and location. The findings show that the proposed detection system based on ML modelling could detect cracks with 100% accuracy. The proposed system can also distinguish between vertical, horizontal, and diagonal cracks with an accuracy of 83.9%, and has a significant identification rate of 84.4% accuracy for detecting crack-width as narrow as 0.5 mm. Moreover, the model can predict the region of the crack with an accuracy of 95.5%. Overall, the results show that the proposed model is very robust and can perform SHM of conveyor belts with high accuracy for a range of parameters and classification scenarios. The method has huge industrial significance in coal mines.

Funder

Monash University, Australian Coal Association Research Program

Australian Government Research Training Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference56 articles.

1. A Review of Passive Wireless Sensors for Structural Health Monitoring;Mod. Appl. Sci.,2013

2. Deep-learning-based crack detection with applications for the structural health monitoring of gas turbines;Struct. Health Monit.,2019

3. Passive RFID sensor systems for crack detection & characterization;NDT E Int.,2017

4. Research status and tendency of longitude tearing protection for belt conveyor;Coal Sci. Technol.,2007

5. The Research of Coal Mine Conveyor Belt Tearing Based on Digital Image Processing;Advances in Intelligent Systems and Computing, Proceedings of the 2012 International Conference on Communication, Electronics and Automation Engineering, Xi’an, China, 23–25 August 2012,2013

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3