Estimation of Displacement for Internet of Things Applications with Kalman Filter

Author:

Ferrero RenatoORCID,Gandino FilippoORCID,Hemmatpour MasoudORCID

Abstract

In the vision of the Internet of Things, an object embedded in the physical world is recognizable and becomes smart by communicating data about itself and by accessing aggregate information from other devices. One of the most useful types of information for interactions among objects regards their movement. Mobile devices can infer their position by exploiting an embedded accelerometer. However, the double integration of the acceleration may not guarantee a reliable estimation of the displacement of the device (i.e., the difference in the new location). In fact, noise and measurement errors dramatically affect the assessment. This paper investigates the benefits and drawbacks of the use of the Kalman filter as a correction technique to achieve more precise estimation of displacement. The approach is evaluated with two accelerometers embedded in commercial devices: A smartphone and a sensor platform. The results show that the technique based on the Kalman filter dramatically reduces the percentage error, in comparison to the assessment made by double integration of the acceleration data; in particular, the precision is improved by up to 72%. At the same time, the computational overhead due to the Kalman filter can be assumed to be negligible in almost all application scenarios.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3