Abstract
In this paper, a dynamic multi-task scheduling prototype is proposed to improve the limited resource utilization in the vehicular networks (VNET) assisted by mobile edge computing (MEC). To ensure quality of service (QoS) and meet the growing data demands, multi-task scheduling strategies should be specially constructed by considering vehicle mobility and hardware service constraints. We investigate the rational scheduling of multiple computing tasks to minimize the VNET loss. To avoid conflicts between tasks when the vehicle moves, we regard multi-task scheduling (MTS) as a multi-objective optimization (MOO) problem, and the whole goal is to find the Pareto optimal solution. Therefore, we develop some gradient-based multi-objective optimization algorithms. Those optimization algorithms are unable to deal with large-scale task scheduling because they become unscalable as the task number and gradient dimensions increase. We therefore further investigate an upper bound of the loss of multi-objective and prove that it can be optimized in an effective way. Moreover, we also reach the conclusion that, with practical assumptions, we can produce a Pareto optimal solution by upper bound optimization. Compared with the existing methods, the experimental results show that the accuracy is significantly improved.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献