Instance Segmentation of Irregular Deformable Objects for Power Operation Monitoring Based on Multi-Instance Relation Weighting Module

Author:

Chen Weihao1ORCID,Su Lumei12,Lin Zhiwei1,Chen Xinqiang1,Li Tianyou1

Affiliation:

1. School of Electrical Engineering and Automation, Xiamen University of Technology, Xiamen 361024, China

2. Xiamen Key Laboratory of Frontier Electric Power Equipment and Intelligent Control, Xiamen 361024, China

Abstract

Electric power operation is necessary for the development of power grid companies, where the safety monitoring of electric power operation is difficult. Irregular deformable objects commonly used in electrical construction, such as safety belts and seines, have a dynamic geometric appearance which leads to the poor performance of traditional detection methods. This paper proposes an end-to-end instance segmentation method using the multi-instance relation weighting module for irregular deformable objects. To solve the problem of introducing redundant background information when using the horizontal rectangular box detector, the Mask Scoring R-CNN is used to perform pixel-level instance segmentation so that the bounding box can accurately surround the irregular objects. Considering that deformable objects in power operation workplaces often appear with construction personnel and the objects have an apparent correlation, a multi-instance relation weighting module is proposed to fuse the appearance features and geometric features of objects so that the relation features between objects are learned end-to-end to improve the segmentation effect of irregular objects. The segmentation mAP on the self-built dataset of irregular deformable objects for electric power operation workplaces reached up to 44.8%. With the same 100,000 training rounds, the bounding box mAP and segmentation mAP improved by 1.2% and 0.2%, respectively, compared with the MS R-CNN. Finally, in order to further verify the generalization performance and practicability of the proposed method, an intelligent monitoring system for the power operation scenes is designed to realize the actual deployment and application of the proposed method. Various tests show that the proposed method can segment irregular deformable objects well.

Funder

the National Natural Science Foundation of China

the Natural Science Foundation of the Department of Science and Technology of Fujian Province

the Foundation for Science and Technology Cooperation Program of Longyan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3