A Code Reviewer Recommendation Approach Based on Attentive Neighbor Embedding Propagation

Author:

Liu Jiahui1ORCID,Deng Ansheng1,Xie Qiuju2,Yue Guanli1

Affiliation:

1. School of Information Science and Technology, Dalian Maritime University, Linghai Road, Dalian 116026, China

2. College of Electrical and Information, Northeastern Agricultural University, Changjiang Road, Harbin 150030, China

Abstract

Code review as an effective software quality assurance practice has been widely applied in many open-source software communities. However, finding a suitable reviewer for certain codes can be very challenging in open-source communities due to the difficulty of learning the characteristics of reviewers and the code-reviewer interaction sparsity in open-source software communities. To tackle this problem, most previous approaches focus on learning developers’ capabilities and experiences and recommending suitable developers based on their historical interactions. However, such approaches usually suffer from data-sparsity and noise problems, which may reduce the recommendation accuracy. In this paper, we propose an attentive neighbor embedding propagation enhanced code reviewer recommendation framework (termed ANEP). In ANEP, we first construct the reviewer–code interaction graph and learn the semantic representations of the reviewer and code based on the transformer model. Then, we explicitly explore the attentive high-order embedding propagation of reviewers and code and refine the representations along their neighbors. Finally, to evaluate the effectiveness of ANEP, we conduct extensive experiments on four real-world datasets. The experimental results show that ANEP outperforms other state-of-the-art approaches significantly.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3