Affiliation:
1. Robotics Engineering Program, Columbus State University, Columbus, GA 31907, USA
Abstract
This paper studies the robust tracking control problem for a class of uncertain nonlinear dynamical systems subject to unknown disturbances. A robust trajectory tracking control law is designed via a simple learning-based control strategy. In the developed design, the cost function based on the desired closed-loop error dynamics is minimized by means of gradient descent technique. A stability proof for the closed-loop nonlinear system is provided based on the pseudo-linear system theory. The learning capability of the developed robust trajectory tracking control law allows the system to mitigate the adverse effects of the uncertainties and disturbances. The numerical simulation results for a planar PPR robot are included to illustrate the effectiveness of the developed control law.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献