Affiliation:
1. College of Information and Computer Engineering, Northeast Forestry University, Harbin 150040, China
Abstract
Network embedding is an effective way to realize the quantitative analysis of large-scale networks. However, mainstream network embedding models are limited by the manually pre-set metapaths, which leads to the unstable performance of the model. At the same time, the information from homogeneous neighbors is mostly focused in encoding the target node, while ignoring the role of heterogeneous neighbors in the node embedding. This paper proposes a new embedding model, HeMGNN, for heterogeneous networks. The framework of the HeMGNN model is divided into two modules: the metapath subgraph extraction module and the node embedding mixing module. In the metapath subgraph extraction module, HeMGNN automatically generates and filters out the metapaths related to domain mining tasks, so as to effectively avoid the excessive dependence of network embedding on artificial prior knowledge. In the node embedding mixing module, HeMGNN integrates the information of homogeneous and heterogeneous neighbors when learning the embedding of the target nodes. This makes the node vectors generated according to the HeMGNN model contain more abundant topological and semantic information provided by the heterogeneous networks. The Rich semantic information makes the node vectors achieve good performance in downstream domain mining tasks. The experimental results show that, compared to the baseline models, the average classification and clustering performance of HeMGNN has improved by up to 0.3141 and 0.2235, respectively.
Funder
National Natural Science Foundation of China
Heilongjiang Provincial Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献