Divergent Selection Task Offloading Strategy for Connected Vehicles Based on Incentive Mechanism

Author:

Yu Senyu1,Guo Yan1,Li Ning1,Xue Duan12,Yuan Hao1

Affiliation:

1. School of Communication Engineering, Army Engineering University of PLA, Nanjing 210000, China

2. School of Computer Science, Liupanshui Normal University, Liupanshui 553000, China

Abstract

With the improvements in the intelligent level of connected vehicles (CVs), travelers can enjoy services such as self-driving, self-parking and audiovisual entertainment inside the vehicle, which place extremely high demands on the computing power of onboard systems (OBSs). However, the arithmetic power of a single CV often cannot meet the diverse service demands of the in-vehicle system. As a new computing paradigm, task offloading based on vehicular edge computing has significant advantages in remedying the shortcomings of single-CV computing power and balancing the allocation of computing resources. This paper studied the computational task offloading of high-speed connected vehicles without the help of roadside edge servers in certain geographic areas. User vehicles (UVs) with insufficient computing power offload some of their computational tasks to nearby CVs with abundant resources. We explored the high-speed driving model and task classification model of CVs to refine the task offloading process. Additionally, inspired by game theory, we designed a divergent selection task offloading strategy based on an incentive mechanism (DSIM), in which we balanced the interests of both the user vehicle and service vehicles. CVs that contribute resources are rewarded to motivate more CVs to join. A DSIM algorithm based on a divergent greedy algorithm was introduced to maximize the total rewards of all volunteer vehicles while respecting the will of both the user vehicle and service vehicles. The experimental simulation results showed that, compared with several existing studies, our approach can always obtain the highest reward for service vehicles and lowest latency for user vehicles.

Funder

Jiangsu Province Natural Science Fund

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3