Memory-Based Sand Cat Swarm Optimization for Feature Selection in Medical Diagnosis

Author:

Qtaish Amjad1ORCID,Albashish Dheeb2ORCID,Braik Malik2,Alshammari Mohammad T.1ORCID,Alreshidi Abdulrahman1ORCID,Alreshidi Eissa Jaber1

Affiliation:

1. Department of Information and Computer Science, College of Computer Science and Engineering, University of Ha’il, Ha’il 81481, Saudi Arabia

2. Computer Science Department, Prince Abdullah Bin Ghazi Faculty of Information and Communication Technology, Al-Balqa Applied University, Al Salt 19117, Jordan

Abstract

The rapid expansion of medical data poses numerous challenges for Machine Learning (ML) tasks due to their potential to include excessive noisy, irrelevant, and redundant features. As a result, it is critical to pick the most pertinent features for the classification task, which is referred to as Feature Selection (FS). Among the FS approaches, wrapper methods are designed to select the most appropriate subset of features. In this study, two intelligent wrapper FS approaches are implemented using a new meta-heuristic algorithm called Sand Cat Swarm Optimizer (SCSO). First, the binary version of SCSO, known as BSCSO, is constructed by utilizing the S-shaped transform function to effectively manage the binary nature in the FS domain. However, the BSCSO suffers from a poor search strategy because it has no internal memory to maintain the best location. Thus, it will converge very quickly to the local optimum. Therefore, the second proposed FS method is devoted to formulating an enhanced BSCSO called Binary Memory-based SCSO (BMSCSO). It has integrated a memory-based strategy into the position updating process of the SCSO to exploit and further preserve the best solutions. Twenty one benchmark disease datasets were used to implement and evaluate the two improved FS methods, BSCSO and BMSCSO. As per the results, BMSCSO acted better than BSCSO in terms of fitness values, accuracy, and number of selected features. Based on the obtained results, BMSCSO as a FS method can efficiently explore the feature domain for the optimal feature set.

Funder

University of Ha’il—Saudi Arabia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3