Affiliation:
1. Department of Information and Computer Science, College of Computer Science and Engineering, University of Ha’il, Ha’il 81481, Saudi Arabia
2. Computer Science Department, Prince Abdullah Bin Ghazi Faculty of Information and Communication Technology, Al-Balqa Applied University, Al Salt 19117, Jordan
Abstract
The rapid expansion of medical data poses numerous challenges for Machine Learning (ML) tasks due to their potential to include excessive noisy, irrelevant, and redundant features. As a result, it is critical to pick the most pertinent features for the classification task, which is referred to as Feature Selection (FS). Among the FS approaches, wrapper methods are designed to select the most appropriate subset of features. In this study, two intelligent wrapper FS approaches are implemented using a new meta-heuristic algorithm called Sand Cat Swarm Optimizer (SCSO). First, the binary version of SCSO, known as BSCSO, is constructed by utilizing the S-shaped transform function to effectively manage the binary nature in the FS domain. However, the BSCSO suffers from a poor search strategy because it has no internal memory to maintain the best location. Thus, it will converge very quickly to the local optimum. Therefore, the second proposed FS method is devoted to formulating an enhanced BSCSO called Binary Memory-based SCSO (BMSCSO). It has integrated a memory-based strategy into the position updating process of the SCSO to exploit and further preserve the best solutions. Twenty one benchmark disease datasets were used to implement and evaluate the two improved FS methods, BSCSO and BMSCSO. As per the results, BMSCSO acted better than BSCSO in terms of fitness values, accuracy, and number of selected features. Based on the obtained results, BMSCSO as a FS method can efficiently explore the feature domain for the optimal feature set.
Funder
University of Ha’il—Saudi Arabia
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献