Development and Experimental Validation of Control Algorithm for Person-Following Autonomous Robots

Author:

Sierra-García J. Enrique1ORCID,Fernández-Rodríguez Víctor2,Santos Matilde3ORCID,Quevedo Eduardo1

Affiliation:

1. Department of Electromechanical Engineering, University of Burgos, 09006 Burgos, Spain

2. Mova Traffic Engineering, INDRA, 28108 Madrid, Spain

3. Institute of Knowledge Technology, Complutense University of Madrid, 28040 Madrid, Spain

Abstract

Automatic guided vehicles, in particular, and industrial autonomous mobile robots, in general, are commonly used to automate intralogistics processes. However, there are certain logistic tasks, such as picking objects of variable sizes, shapes, and physical characteristics, that are very difficult to handle fully automatically. In these cases, the collaboration between humans and autonomous robots has been proven key for the efficiency of industrial processes and other applications. To this aim, it is necessary to develop person-following robot solutions. In this work, we propose a fully autonomously controlling autonomous robotic interaction for environments with unknown objects based on real experiments. To do so, we have developed an active tracking system and a control algorithm to implement the person-following strategy on a real industrial automatic-guided vehicle. The algorithm analyzes the cloud of points measured by light detection and ranging (LIDAR) sensor to detect and track the target. From this scan, it estimates the speed of the target to obtain the speed reference value and calculates the direction of the reference by a pure-pursuit algorithm. In addition, to enhance the robustness of the solution, spatial and temporal filters have been implemented to discard obstacles and detect crossings between humans and the automatic industrial vehicle. Static and dynamic test campaigns have been carried out to experimentally validate this approach with the real industrial autonomous-guided vehicle and a safety LIDAR.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3