Inertial Measurement Unit-Based Real-Time Adaptive Algorithm for Human Walking Pattern and Gait Event Detection

Author:

Lu Yinxiao1,Zhu Jun12ORCID,Chen Wenming1ORCID,Ma Xin13

Affiliation:

1. Institute of Biomedical Engineering & Technology, Academy for Engineering & Technology, Fudan University, 220 Handan Road, Shanghai 200433, China

2. Center of Biomedical Engineering & Technology, Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu 322000, China

3. Department of Orthopaedics, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200031, China

Abstract

In this work, a lightweight adaptive hybrid gait detection method with two inertial measurement units (IMUs) on the foot and thigh was developed and preliminarily evaluated. An adaptive detection algorithm is used to eliminate the pre-training phase and to modify parameters according to the changes within a walking trial using an adaptive two-level architecture. The present algorithm has a two-layer structure: a real-time detection algorithm for detecting the current gait pattern and events at 100 Hz., and a short-time online training layer for updating the parameters of gait models for each gait pattern. Three typical walking patterns, including level-ground walking (LGW), stair ascent (SA), and stair descent (SD), and four events/sub-phases of each pattern, can be detected on a portable Raspberry-Pi platform with two IMUs on the thigh and foot in real-time. A preliminary algorithm test was implemented with healthy subjects in common indoor corridors and stairs. The results showed that the on-board model training and event decoding processes took 20 ms and 1 ms, respectively. Motion detection accuracy was 97.8% for LGW, 95.6% for SA, and 97.1% for SD. F1-scores for event detection were over 0.86, and the maximum time delay was steadily below 51 ± 32.4 ms. Some of the events in gait models of SA and SD seemed to be correlated with knee extension and flexion. Given the simple and convenient hardware requirements, this method is suitable for knee assistive device applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3