Overlay Optimization Algorithm for Directed Sensor Networks with Virtual Force and Particle Swarm Optimization Synergy

Author:

Zhu Lingjian1ORCID,Lin Li1,Liang Qi2,Lu Yaling3,Tan Haonan1,Ma Xuan3,Zhang Dongya1

Affiliation:

1. School of Mechanical and Precision Instrument Engineering, Xi’an University of Technology, Xi’an 710048, China

2. Guangxi Research Institute of Metrology & Test, Nanning 530299, China

3. College of Automation, Xi’an University of Technology, Xi’an 710048, China

Abstract

In this study, a novel algorithm for optimizing the coverage of directed sensor networks is proposed. The deployment of sensor networks is typically random, leading to the potential issues of extensive coverage overlaps and blind areas. To address this challenge and enhance the effectiveness of network coverage, a directional sensor network coverage optimization algorithm is developed based on the principles of virtual force and particle swarm optimization. Firstly, the article introduces the concept of a segmented virtual negative centroid model. This model revolutionizes the configuration of the virtual negative centroid, thereby enabling a more efficient adjustment of the gravitational forces exerted by the coverage blind areas on the sensor nodes. Therefore, the influence of these blind areas on the improvement of network coverage is significantly amplified. Secondly, taking into account the characteristics of global optimization and the inherent randomness of particle swarm optimization, the algorithm synergistically combines the principles of virtual force and particle swarm optimization. This integration effectively fine-tunes the sensing direction of the sensor nodes, thereby optimizing their overall performance. The algorithm in this study incorporates an adjusted inertia weight strategy and introduces Gaussian disturbance in the local optimization enhancement phase to prevent local optimization, accelerate particle convergence, and facilitate the sensor network’s attainment of an optimal distribution for coverage optimization. Simulation experiments were conducted to verify the algorithm’s effectiveness. The initial sensor network coverage was 31.04%. After applying the algorithm, the average coverage increased to 80.16%, with a maximum coverage of 84.2%. These results verify the effectiveness of the algorithm.

Funder

National Natural Science Foundation of China and the Department of Science and Technology of Shaanxi Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3