How Far Have We Progressed in the Sampling Methods for Imbalanced Data Classification? An Empirical Study

Author:

Sun Zhongbin12,Zhang Jingqi3,Zhu Xiaoyan3,Xu Donghong12

Affiliation:

1. Mine Digitization Engineering Research Center of Ministry of Education, Xuzhou 221116, China

2. School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China

3. School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Imbalanced data are ubiquitous in many real-world applications, and they have drawn a significant amount of attention in the field of data mining. A variety of methods have been proposed for imbalanced data classification, and data sampling methods are more prevalent due to their independence from classification algorithms. However, due to the increasing number of sampling methods, there is no consensus about which sampling method performs best, and contradictory conclusions have been obtained. Therefore, in the present study, we conducted an extensive comparison of 16 different sampling methods with four popular classification algorithms, using 75 imbalanced binary datasets from several different application domains. In addition, four widely-used measures were employed to evaluate the corresponding classification performance. The experimental results showed that none of the employed sampling methods performed the best and stably across all the used classification algorithms and evaluation measures. Furthermore, we also found that the performance of the different sampling methods was usually affected by the classification algorithms employed. Therefore, it is important for practitioners and researchers to simultaneously select appropriate sampling methods and classification algorithms, for handling the imbalanced data problems at hand.

Funder

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3