A Novel Complex-Valued Hybrid Neural Network for Automatic Modulation Classification

Author:

Xu Zhaojing1ORCID,Hou Shunhu2ORCID,Fang Shengliang1,Hu Huachao3,Ma Zhao1

Affiliation:

1. School of Space Information, Space Engineering University, Beijing 101416, China

2. Graduate School, Space Engineering University, Beijing 101416, China

3. Institute of Spacecraft System Engineering, Beijing 100076, China

Abstract

Currently, dealing directly with in-phase and quadrature time series data using the deep learning method is widely used in signal modulation classification. However, there is a relative lack of methods that consider the complex properties of signals. Therefore, to make full use of the inherent relationship between in-phase and quadrature time series data, a complex-valued hybrid neural network (CV-PET-CSGDNN) based on the existing PET-CGDNN network is proposed in this paper, which consists of phase parameter estimation, parameter transformation, and complex-valued signal feature extraction layers. The complex-valued signal feature extraction layers are composed of complex-valued convolutional neural networks (CNN), complex-valued gate recurrent units (GRU), squeeze-and-excite (SE) blocks, and complex-valued dense neural networks (DNN). The proposed network can improve the extraction of the intrinsic relationship between in-phase and quadrature time series data with low capacity and then improve the accuracy of modulation classification. Experiments are carried out on RML2016.10a and RML2018.01a. The results show that, compared with ResNet, CLDNN, MCLDNN, PET-CGDNN, and CV-ResNet models, our proposed complex-valued neural network (CVNN) achieves the highest average accuracy of 61.50% and 62.92% for automatic modulation classification, respectively. In addition, the proposed CV-PET-CSGDNN has a significant improvement in the misjudgment situation between 64QAM, 128QAM, and 256QAM compared with PET-CGDNN on RML2018.01a.

Funder

Key Basic Research Projects of the Basic Strengthening Program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3