Improving Person Re-Identification with Distance Metric and Attention Mechanism of Evaluation Features

Author:

Zhou Jieqian1

Affiliation:

1. State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

In the present study, we developed a person re-identification network called the Multiple Granularity Attention Cosine Network (MGAC). MGAC utilizes the Multiple Granularity Network (MGN), which combines global and local features and constructs an attention mechanism to add to MGN to form a Multiple Granularity Attention Network (MGA). With the attention mechanism, which focuses on important features, MGA assesses the importance of learned features, resulting in higher scores for important features and lower scores for distracting features. Thus, identification accuracy is increased by enhancing important features and ignoring distracting features. We performed experiments involving several classical distance metrics and selected cosine distance as the distance metric for MGA to form the MGAC re-identification network. In experiments on the Market-1501 mainstream dataset, MGAC exhibited high identification accuracies of 96.2% and 94.9% for top-1 and mAP, respectively. The results indicate that MGAC is an effective person re-identification network and that the attention mechanisms and cosine distance can significantly increase the person re-identification accuracy.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3