Affiliation:
1. School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract
Leveraging technological advancements such as containers, microservices, and service mesh, cloud-native edge computing (CNEC) has become extensively discussed and applied in both academia and industry. The integration of mobile edge computing and communication is crucial for the future communication architecture in order to fully utilize distributed and fragmented communication resources and computing power. The potential for cloud-native integration can help merge mobile edge computing and communication, enhancing network flexibility and resource utilization. This paper investigates the implementation plan for extending cloud-native capabilities to integrated computing and communication (INCCOM) in the satellite–terrestrial network. We construct an experimental verification platform called ComEdge in a real-world setting. Subsequently, we analyze the architecture, functional characteristics, and deployment of the platform in a real-world environment. Furthermore, we explore the solution of deep reinforcement learning in the deployment of cloud-native core network and conduct a preliminary verification of the platform’s potential to enable artificial intelligence in a real production environment, which will provide guidance to both academic and industry sectors. Finally, we conduct an analysis on the challenges and opportunities encountered by the cloud-native INCCOM network system.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献