Improved Collaborative Recommendation Model: Integrating Knowledge Embedding and Graph Contrastive Learning

Author:

Jiang Liwei1ORCID,Yan Guanghui12,Luo Hao123,Chang Wenwen12

Affiliation:

1. School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

2. Key Laboratory of Media Convergence Technology and Communication, Lanzhou 730030, China

3. School of Information Science and Engineering, Gansu University of Traditional Chinese Medicine, Lanzhou 730070, China

Abstract

A recommendation algorithm combined with a knowledge graph enables auxiliary information on items to be obtained by using the knowledge graph to achieve better recommendations. However, the recommendation performance of existing methods relies heavily on the quality of the knowledge graph. Knowledge graphs often contain noise and irrelevant connections between items and entities in the real world. This knowledge graph sparsity and noise significantly amplifies the noise effects and hinders the accurate representation of user preferences. In response to these problems, an improved collaborative recommendation model is proposed which integrates knowledge embedding and graph contrastive learning. Specifically, we propose a knowledge contrastive learning scheme to mitigate noise within the knowledge graph during information aggregation, thereby enhancing the embedding quality of items. Simultaneously, to tackle the issue of insufficient user-side information in the knowledge graph, graph convolutional neural networks are utilized to propagate knowledge graph information from the item side to the user side, thereby enhancing the personalization capability of the recommendation system. Additionally, to resolve the over-smoothing issue in graph convolutional networks, a residual structure is employed to establish the message propagation network between adjacent layers of the same node, which expands the information propagation path. Experimental results on the Amazon-book and Yelp2018 public datasets demonstrate that the proposed model outperforms the best baseline models by 11.4% and 11.6%, respectively, in terms of the Recall@20 evaluation metric. This highlights the method’s efficacy in improving the recommendation accuracy and effectiveness when incorporating knowledge graphs into the recommendation process.

Funder

the National Natural Science Foundation of China

the Central Government Guided Local Funds for Science and Technology Development

the Natural Science Foundation for Young Scientists of Gansu Province

the Gansu Provincial Science and Technology Plan Project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3